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The elastic moduli of AI-Si and AI-Ge alloys obtained by solid-solution under pressure are 
investigated theoretically using a previous treatment based on the microscopic electronic 
theory. The obtained results for elastic coefficients such as bulk modulus, shear modulus, 
Young's modulus and Poisson's ratio for matrix AI are in good agreement with temperature- 
dependent experimental data. These moduli of AI-Si and AI-Ge alloys are calculated, and the 
concentration dependence ,of the elastic data is presented quantitatively. 

1. I n t r o d u c t i o n  
By rapid quenching from the liquid state under pres- 
sure, a substantial increase in the solubility of Si and 
Ge in A1 has been observed experimentally [1 3]. 
Recently, the present authors have reported the solu- 
bility limit of Si and Ge in AI under pressure, using the 
microscopic electronic theory based on pseudopoten- 
tials and the virtual crystal approximation [4]. The 
bulk properties and solid solubility of A1-Si and 
AI-Ge systems obtained from first principles were 
consistent with experimental data. In the present 
work, we introduce the dynamic contribution to free 
energy, in addition to the static term, and formulate 
the temperature-dependent elastic moduli by Fuch's 
method [5]. Next, we calculate the temperature varia- 
tion of elastic moduli for matrix A1, and compare the 
obtained results with observed data. Finally, we apply 
our formulation to obtain the concentration depend- 
ence of elastic coefficients for A1 Si and A1-Ge solid 
solutions. 

2. F o r m u l a t i o n s  
In the framework of the usual second-order perturba- 
tion based on pseudopotentials, the Helmholtz free 
energy F(~,  x, T) per atom in the metallic alloys 
All_xSi x and A1 l_xGe= is given by 

F(f~, x, T) E(Y~, x) + (1 al T) = - -  X)Fph(~")  , X, 
~- 17Si or  Ge(~ '~ ,  X ,  T) (1) 

-~- "~'~ p h  

where f2 is the atomic volume at the absolute temper- 
ature T. The static crystal energy E(f~, x) per atom is 
given in the virtual crystal approximation by 

E(f~, x) = Ei(f~, x) + E(~ x) + E~ x) 
-k E ( 2 ) ( ~ ,  x )  (2) 

where the model for the pseudopotential, the dielectric 
screening function and the notation are the same as 
those in our previous work [4]. In the harmonic 
approximation, the lattice vibrational free energy 
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F~h(f~, x, T) for the band (A1) and local (Si or Ge) 
mode is given by 

F~h(n ,x ,  T) = k T . ~ l n  2slnn L k T  (3) 
Z~q 

where j = A1, Si or Ge, the suffix i refers to the 
polarization and q the wave vector in the Brillouin 
zone. The normal vibrational modes with the wave 
vector q and the frequency v{(q, x) are determined by 
solving the secular equation 

IO~13(q,x) - Mjv!(q,x)28a,131 = 0 (4) 

where the details of the model and the notation are the 
same as in our previous work [6, 7]. 

The second-order Brugger elastic constants are 
given as follows: 

c , jk ,  = n \en, ank,/n,  = o (5) 

The Voigt abbreviation is used to denote the Brugger 
elastic constants, namely Cijk~ = C j p ,  where ij's and J's 
are related by 11-1, 22-2, 33-3, 23-4, 31-5 and 12-6. 
Fuchs [5] used three kinds of deformation parameter: 
v, 71 and zl. The isothermal second-order elastic 
constants B, C and C', which correspond to uniform 
volume expansion, shear deformation in one plane, 
and expansion and contraction with the correspond- 
ing constant cross-sectional area, respectively, are re- 
lated to the derivatives of the Helmholtz free energy as 
follows: 

1 d2F 
B - f~ dv 2 (6) 

1 dZF 
C - (7) 

a dv 2 

1 d2F 
C' - 4f~ de 2 (S) 

The elastic constants have two contributions, one 
arising from the static crystal energy part E(D, x) and 
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Figure 1 Temperature shift of elastic moduli AC~(T) against temperature Tfor AI. (a) Bulk modulus; (b) shear modulus; (c) Young's modulus; 
(d) Poisson's ratio. �9 [10] and �9 [11], observed data. 
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the other from the lattice vibrational part F J h ( ~ ,  X, T). 
The contribution from the crystal energy part to the 
elastic constants is calculated by the homogeneous 
deformation method [8]. F i r s t ,  considering the 

! lattice vector component R~ = v~/3Rx, Rr = vl/3Ry, 
R'~ = vl/3Rz, the static bulk modulus B~(Q, x) is given 
by 

d 2 E(Q, x) 
B~(EL x) = Q dQ 2 (9) 

where the static energy E depends on the volume in 
three ways such as direct crystal volume Q, .reciprocal 
lattice Vectors G and electron density n( = Z/f2). Next, 

t t considering R ' ~ = R x +  y~Ry, R y = R y ,  R z = R ~ ,  
t t namely, G~, = Gx, Gy = Gy - 71Gx, G~ = Gz in wave- 

number space, where the crystal volume is maintained 
constant, the static shear coefficient C,(fL x) is given 
only by contributions through reciprocal lattice vec- 
tors G by 

1 ~ G z ~ Z O ( G ,  x )  
- 2f~ L x ~ (10)  

G # O  t~,oy 
Cs(~, ~) 

a n d  

4nZ2e 2 
�9 (G, x) - ~G 2 

VbVCA(G) 2 
f~ 

• 
1 - 4ne2f(G)• 2 (11) 

where the notation and details are as those in 
our previous work [4]. Thirdly, considering R~ = 
(1 + El)Rx, R'y = Ry/(1 + e~), R'~ = R~, namely, 

t t G'x = Gx/(1 + al), Gy = (1 + al)Gy, Gz = G~ in wave- 
number space where the crystal volume is also main- 
tained constant, the static shear modulus C~(Q, x) is 
given by 

1 m~2 ~2~(G, X) ~ 2 Q 2 0 ( G ,  x)  

C ' s ( Q , x ) -  4 Q 6 ~ 0 L t l x  ~ - ~  2 + us #Gr2r2 

and 

E 
cy - 2C'  1 (14)  

3. Numerical  results and discussion 
Firstly, we show the obtained results of elastic moduli 
for matrix A1, and give the temperature variation 
ACi(T) -= Ci(T) - Ci(T= 300 K) of three elastic 
moduli such as bulk modulus, shear modulus, Young's 
modulus and Poisson's ratio in Fig: 1. The results with 
the Vashishta Singwi screening function I-4] are 
shown below. Results with other screening functions 
[4] are almost the same, and the numerical results for 
the elastic modulus Ci and its temperature-derivative 
d[lnCi]/dT at T =  300 K for A1 are summarized, 
together with observed data [10, 11], in Table I, where 
the calculated error is due to the different screening 
function. From Fig. l and Table I, we see that our 
obtained data of elastic moduli for matrix A1 are in 
good agreement with the observed data [10, 11] from 
low to high temperatures. 

Next, we calculate the elastic moduli of Alt_xSix 
and Ala_xGex alloys, and show the concentration 
variation ACi(x) = Ci(x) - Ci(x = 0) of three elastic 
moduli and Poisson's ratio at T = 300 K in Fig. 2. The 
obtained data with various screening functions are 
qualitatively the same as in Fig. 2, and the numerical 
results about the concentration derivative d [In Ci]/dx 
at T = 300 K and x = 0 for A1-Si and A1 Ge alloys 
are presented in Table II. From Fig. 2 and Table II, we 
see that all of bulk modulus, shear modulus, and 
Young's modulus decrease with the increase of solute 
Si or Ge atom and Poisson's ratio increases inversely. 
For AI~-xGex alloy with the same solid solubility x, 
the shift of elastic moduli from matrix A1 is large in 
comparison with that for Al~_xSi x alloy. Then, the 

_ 2GxGr~Z~(G,c3G~,dGyX)] (12) 

The contribution from the lattice vibrational part  
involves the derivatives of the normal-mode frequen- 
cies v~(q, x)"with respect to the deformation para- 
meters v, 71, el, and their calculation is complicated 
from first principles. In the present work, we adopt the 
approximation by Leibfried and Ludwig I-9], where 
every normal-mode frequency is replaced by the 
square root of the second moment I.t 2 of the frequency 
distribution function. This second moment, P~2, is 
obtained by taking the trace of the dynamical matrix 
D~)f~(q, x) and by averaging over the wave vectors. 
Then the contribution BD(Q, x), Co(Q, x) and C~(Q, x) 
from the lattice vibrational part is obtained from the 
derivatives of la 2 with respect to Fuch's strain para- 
meters. Using the total bulk modulus B(Q, x) and 
shear modulus C'(Q, x), we obtain Young's modulus 
E(Q, x) and Poisson's ratio or(Q, x) of A1 l_xSix and 
All_xGex alloys by 

9BC' 
E - (13) 

3 B + C '  

T A B L E  I Elastic moduli (in GPa, except for Poisson's ratio) and 
its temperature derivative (10 -4 K 1) at T = 300 K for matrix A1 

Present Observed 

Ci 

d[ln Ci] 

dT 

B 7.95• 7.608[10], 7.571111] 
C' 2.29 • 0.10 2.302[10], 2.304111] 
E 6.26• 6.273[10], 6.275111] 

0.363 • 0.008 0.3626[10], 0.3618111] 

B - 2.13 • 0.13 - 2 .16[10] ,  -2.51111] 

C' - 6 . 9 6 •  -6.95[10] ,  -6.24111] 
E - 6.63 • 0.32 - 6.50[10], - 5.70111] 

1.62• 1.65[10], 0.73111] 

T A B L E  I I  Calculated concentration derivative of elastic moduli 
d[lnCi]/dx at T =  300 K and x = 0 for All_xSi ~ and All_:,Gex 
solid solutions 

A1-Si A1-Ge 

B - 1.91 ___ 0.12 - 2.65 4- 0.11 
C' 1.31 + 0.06 - 2.34 + 0.08 
E -- 1.13 4- 0.06 -- 2.01 ___ 0.09 
cr 0.48 + 0.06 1.02 + 0.08 
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Figure 2 Concentration dependence of elastic moduli AC~(x) against atomic fraction x at T = 300 K for A1 l_xSi x and All xGex solid 
solutions. (a) Bulk modulus, (b) shear modulus; (c) Young's modulus; (d) Poisson's ratio. 
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concentration derivatives d[lnCi]/dx at x = 0 in 
Table II have a weak temperature dependence, and 
are decreased at T = 900 K by approximately 4% for 
A1-Si and 2% for A1-Ge system. 

4. C o n c l u s i o n s  
The elastic moduli of A1-Si and A1LGe alloys were 
studied by solid-solutioning under pressure, and the 
concentration dependence of elastic moduli were pre- 
dicted for these solid solutions from first principles, 
based on the microscopic electronic theory. The data 
obtained are useful in studying the mechanical and 
thermal properties of AI-Si and A1-Ge systems, and 
further experimental research in this field could be 
useful. 
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